Tiger Analytics Logo

Tiger Analytics

Gen AI Data Engineer

Reposted 17 Days Ago
Remote
Hiring Remotely in United States
Expert/Leader
Remote
Hiring Remotely in United States
Expert/Leader
Responsible for designing and building distributed data systems, developing robust data pipelines, and architecting data platforms to support large-scale data processing.
The summary above was generated by AI
Description

Tiger Analytics is looking for experienced Machine Learning Engineers with Gen AI experience to join our fast-growing advanced analytics consulting firm. Our employees bring deep expertise in Machine Learning, Data Science, and AI. We are the trusted analytics partner for multiple Fortune 500 companies, enabling them to generate business value from data. Our business value and leadership has been recognized by various market research firms, including Forrester and Gartner.

We are looking for top-notch talent as we continue to build the best global analytics consulting team in the world. You will be responsible for:

Technical Skills Required:

Programming Languages: Proficiency in Python, SQL, and PySpark.

Data Warehousing: Experience with Snowflake, NOSQL and Neo4j.

Data Pipelines: Proficiency with Apache Airflow.

Cloud Platforms: Familiarity with AWS (S3, RDS, Lambda, AWS batch, SageMaker processing Job, CloudFormation, etc.) or GCP (Vertex AI RAG, Data pipeline, Bigquery, GKE)

Operating Systems: Experience with Linux.

Batch/Realtime Pipelines: Experience in building and deploying various pipelines.

Version Control: Experience with GitHub.

Development Tools: Proficiency with VS Code.

Engineering Practices: Skills in testing, deployment automation, DevOps/SysOps.

Communication: Strong presentation and communication skills.

Collaboration: Experience working with onshore/offshore teams.

Requirements

Desired Skills:

·        Big Data Technologies: Experience with Hadoop and Spark.

Data Visualization: Proficiency with Streamlit and dashboards.

·        APIs: Experience in building and maintaining internal APIs.

·        Machine Learning: Basic understanding of ML concepts.

·        Generative AI: Familiarity with generative AI tools and techniques.

Additional Expertise:

·        Knowledge Graphs: Experience with creation and retrieval.

·        Vector Databases: Proficiency in managing vector databases.

·        Data Persistence: Ability to develop and maintain multiple forms of data persistence and retrieval methods (RDMBS, Vector Databases, buckets, graph databases, knowledge graphs, etc.).

·        Cloud Technologies: Experience with AWS, especially SageMaker, Lambda, OpenSearch.

·        Automation Tools: Experience with Airflow DAGs, AutoSys, and CronJobs.

·        Unstructured Data Management: Experience in managing data in unstructured forms (audio, video, image, text, etc.).

·        CI/CD: Expertise in continuous integration and deployment using Jenkins and GitHub Actions.

·        Infrastructure as Code: Advanced skills in Terraform and CloudFormation.

·        Containerization: Knowledge of Docker and Kubernetes.

·        Monitoring and Optimization: Proven ability to monitor system performance, reliability, and security, and optimize them as needed.

·        Security Best Practices: In-depth understanding of security best practices in cloud environments.

·        Scalability: Experience in designing and managing scalable infrastructure.

·        Disaster Recovery: Knowledge of disaster recovery and business continuity planning.

·        Problem-Solving: Excellent analytical and problem-solving abilities.

·        Adaptability: Ability to stay up-to-date with the latest industry trends and adapt to new technologies and methodologies.

·        Team Collaboration: Proven ability to work well in a team environment and contribute to a positive, collaborative culture.

GenAI Engineer Specific Skills:

·        Industry Experience: 8+ years of experience in data engineering, platform engineering, or related fields, with deep expertise in designing and building distributed data systems and large-scale data warehouses.

·        Data Platforms: Proven track record of architecting data platforms capable of processing petabytes of data and supporting real-time and batch ingestion processes.

·        Data Pipelines: Strong experience in building robust data pipelines for document ingestion, indexing, and retrieval to support scalable RAG solutions. Proficiency in information retrieval systems and vector search technologies (e.g., FAISS, Pinecone, Elasticsearch, Milvus).

·        Graph Algorithms: Experience with graphs/graph algorithms, LLMs, optimization algorithms, relational databases, and diverse data formats.

·        Data Infrastructure: Proficient in infrastructure and architecture for optimal extraction, transformation, and loading of data from various data sources.

·        Data Curation: Hands-on experience in curating and collecting data from a variety of traditional and non-traditional sources.

·        Ontologies: Experience in building ontologies in the knowledge retrieval space, schema-level constructs (including higher-level classes, punning, property inheritance), and Open Cypher.

·        Integration: Experience in integrating external databases, APIs, and knowledge graphs into RAG systems to improve contextualization and response generation.

·        Experimentation: Conduct experiments to evaluate the effectiveness of RAG workflows, analyze results, and iterate to achieve optimal performance.

Benefits

This position offers an excellent opportunity for significant career development in a fast-growing and challenging entrepreneurial environment with a high degree of individual responsibility.

Top Skills

Apache Airflow
AWS
CloudFormation
Docker
GCP
Git
Hadoop
Jenkins
Kubernetes
Linux
Neo4J
NoSQL
Pyspark
Python
Snowflake
Spark
SQL
Streamlit
Terraform
Vs Code

Similar Jobs

13 Seconds Ago
Remote or Hybrid
Orlando, FL, USA
Senior level
Senior level
AdTech • Cloud • Digital Media • Information Technology • News + Entertainment • App development
The WAF Security Engineer will lead secure infrastructure design and implementation, manage cybersecurity budgets, guide technical teams, and ensure compliance with security protocols.
Top Skills: Cloud (Aws Preferred)CybersecurityEmail SecurityIdentity And Access Management (Iam)It Systems AdministrationNetwork Security
16 Seconds Ago
Remote or Hybrid
New York, NY, USA
Senior level
Senior level
AdTech • Cloud • Digital Media • Information Technology • News + Entertainment • App development
The Senior Cyber Infrastructure Engineer will lead security architecture, manage application security systems, improve security workflows, and mentor engineers while collaborating with various teams to enhance cybersecurity measures.
Top Skills: AWSAzureCrowdstrikeGCPPalo AltoPowershellProofpointPythonQualysSnykSplunk SiemWizZerofox
An Hour Ago
Remote or Hybrid
California, USA
100K-110K Annually
Mid level
100K-110K Annually
Mid level
Artificial Intelligence • Hardware • Information Technology • Security • Software • Cybersecurity • Big Data Analytics
The CAD/RMS System Manager enhances public safety systems through technical support, operational efficiency strategies, and strong customer relationships while leading process improvements.
Top Skills: CadComputer ScienceMicrosoft Sql ServerMicrosoft Windows ServerNetworkingOdbcOps ManagerPublic Safety ApplicationsSystem Maintenance

What you need to know about the Charlotte Tech Scene

Ranked among the hottest tech cities in 2024 by CompTIA, Charlotte is quickly cementing its place as a major U.S. tech hub. Home to more than 90,000 tech workers, the city’s ecosystem is primed for continued growth, fueled by billions in annual funding from heavyweights like Microsoft and RevTech Labs, which has created thousands of fintech jobs and made the city a go-to for tech pros looking for their next big opportunity.

Key Facts About Charlotte Tech

  • Number of Tech Workers: 90,859; 6.5% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Lowe’s, Bank of America, TIAA, Microsoft, Honeywell
  • Key Industries: Fintech, artificial intelligence, cybersecurity, cloud computing, e-commerce
  • Funding Landscape: $3.1 billion in venture capital funding in 2024 (CED)
  • Notable Investors: Microsoft, Google, Falfurrias Management Partners, RevTech Labs Foundation
  • Research Centers and Universities: University of North Carolina at Charlotte, Northeastern University, North Carolina Research Campus

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account